We have also shown that previous studies have overestimated blue carbon storage in some river delta areas, such as the Amazon in Brazil; the Sundarbans region in India, where the Ganges, Brahmaputra and Meghna rivers converge; the Zambezi delta in Mozambique; and the Indus river delta in Pakistan. Others have grossly underestimated blue carbon storage in carbonate (peat-dominated) coastlines, such as Belize, the Florida Keys, Puerto Rico, Mexico’s Yucatan, Cuba, the Dominican Republic and several Caribbean islands.
The key to improving these estimates, we found, is to factor in how rivers, tides, waves and climate shape coastal landforms to create different environmental settings. Using this approach, we have produced a more accurate estimate of global blue carbon “hot spots” – an important first step toward protecting them.
Adapted to many settings
Mangroves can extend along tropical shorelines to the very edge of warm temperate climate zones, controlled by changing frequency of frosts. They grow where tides and salt from oceans meet rivers carrying sediments from continents, mixing to form different types of intertidal zones.
Deltas exist where large rivers with very turbid waters and very little salt deliver sediment to the coast, forming extensive mud banks. In contrast, lagoons and coasts formed mainly of carbonate rock, such as chalk or limestone, have beautiful blue salty waters and firm sandy or coraline sediment along shorelines. In a middle category, estuaries form where rivers meet the sea and tides mix fresh and salt waters, forming brackish water that changes seasonally as river levels rise and fall.
Mangroves grow very differently in these various settings. In deltas, some of the largest mangrove trees in the world reach the heights of rain forests, with extensive roots penetrating into soft silty mud. In contrast, mangrove trees growing in the sediments of a carbonate shoreline are so much smaller that they look stunted, like ornamental trees in public parks.